STEREOCHEMISTRY AND DEGRADATION OF THIONUPHLUTINE S-METHIODIDE

Jacek Cybulski, Anna Scholl-Aleksandrowicz, Krystyna Wojtasiewicz and Jerzy T. Wróbel

Department of Chemistry, University of Warsaw, 02-093 Warsaw, Poland

Received December 9th, 1986

The structure of thionuphlutine S-methiodide is presented, based on the ${ }^{13} \mathrm{C}$ NMR spectra analysis. The S-methiodide was degraded under the conditions of Hofmann degradation.

Thionuphlutine I is a sulfur containing $N u p h a r$ alkaloid isomeric with thiobinupharidine $I I$ (sulfur equatorial) in respect of the configuration on the atom $C(7)$ in the $A B$ quinolizidine ring (sulfur atom axial) ${ }^{1}$.

Methylation of I at room temperature, contrary to the results obtained ${ }^{2-4}$ with $I I$, afforded S-methiodide III in a reasonably good yield. Compound III was accompanied by some N -methylated products. This reaction is the first example in the group of Nuphar alkaloids of methylation which takes place on the sulfur atom. This phenomenon could be explained in terms of lesser steric hindrance while sulfur is axial.

"
The structure of III was established by ${ }^{13} \mathrm{C}$ NMR spectroscopy. To identify the carbon atoms the SFORD technique was used (Table I). Chemical shifts for carbon atoms in both quinolizidine and furan rings were similar to those of the corresponding carbon atoms of thionuphlutine I (ref. ${ }^{5}$). Paramagnetic shifts were observed for carbon atoms α to sulfur. In addition, the paramagnetic shift for the quaternary
$\mathrm{C}(7)$ atom was larger $\underset{(+)}{(+14 \cdot 8 \mathrm{ppm})}$ than that of $\mathrm{C}\left(17^{\prime}\right)(+2 \cdot 4 \mathrm{ppm})$, thus pointing out the presence of the $\mathrm{S}-\mathrm{CH}_{3}$ group ${ }^{6}$.

S-Methiodide $I I I$ was degraded under the conditions used for Hofmann degradation. The sole product $I V$ was obtained in a good yield. Breaking of the $\mathrm{C}(7)-{ }_{-}^{(+)}$ bond must be interpreted in terms of β-trans elimination due to the presence of the sulfonium fragment and axial hydrogen atom on $\beta \mathrm{C}(8)$.

The structure of $I V$ was determined by ${ }^{13} \mathrm{C}$ NMR spectroscopy (Table I). Both quinolizidine rings save the trans conformation and the atom $\mathrm{C}\left(7^{\prime}\right)$ retains its configuration, i.e. the $-\mathrm{CH}_{2}-\mathrm{S}-\mathrm{CH}_{3}$ group remains equatorial and the $\mathrm{C}(17)$ atom axial in the $A^{\prime} B^{\prime}$ ring. The double bond is present between the $C(7)-C(8)$ atoms.

The above findings are based on the following observations: (i) Diagnostics for the trans configuration of the quinolizidine rings: $\mathrm{C}(6)$ atom appears at 58.18 ppm (compare with trans- Δ^{7}-dehydronupharolutine ${ }^{7} ; \mathrm{C}(6)$ at 56.99 ppm$), \mathrm{C}\left(6^{\prime}\right)$ at 62.47 ppm (compare with I). (ii) Chemical shift for $\mathrm{C}(17)$ was 38.14 ppm (axial) and for $C\left(17^{\prime}\right) 46 \cdot 11 \mathrm{ppm}$ (equatorial) ${ }^{5}$. (iii) Chemical shifts for the $C(7)$ and $C(8)$ were 132.90 ppm and 122.34 ppm , respectively, placing the double bond between these atoms (compare with trans- Δ^{7}-dehydronupharolutine; $\mathrm{C}(7)=133.80 \mathrm{ppm}, \mathrm{C}(8)=$ $=118.54 \mathrm{ppm})$.

EXPERIMENTAL

The results of elemental analyses were within permissible error. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Jeol 100 MHz spectrometer and the ${ }^{13}$ C NMR spectra on a Jeol FX 90Q spectrometer using tetramethylsilane as an internal reference. Mass spectrum was registered on a LKB 2091 spectrometer. Optical rotation was measured in chloroform solution on a Perkin-Elmer polarimeter (type 241) using a $1-\mathrm{dm}$ cell.

Quaternization of Thionuphlutine I

To $988 \mathrm{mg}(0.002 \mathrm{~mol}) I$ in $20 \mathrm{~cm}^{3}$ acetone, methyl iodide (0.01 mol) was added and the mixture was kept at room temperature for two weeks. Upon removal of the solvent and excess methyl iodide, the mixture was chromatographed on a column packed with $\mathrm{Al}_{2} \mathrm{O}_{3}$ (Fluka $506 \mathrm{C}, \mathrm{pH}$ 6.0 ± 0.5, grade III). Thin-layer chromatography was carried out on glass plates coated with the alumina Woelm acid TLC. From reaction mixture, compound III was obtained from the chloroform-methanol $97: 3$ fraction; $521 \mathrm{mg}, 41 \%$ yield, yellow oil. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right)$: $0.92 \mathrm{~d}, 6 \mathrm{H}\left(\mathrm{C}\left(1^{\prime}\right)-\mathrm{CH}_{3}, \mathrm{C}(1)-\mathrm{CH}_{3}\right) ; 1.00-3.06 \mathrm{~m}, 28 \mathrm{H} ; 3.20 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{S}-\mathrm{CH}_{3}\right) ; 3.94 \mathrm{~d}, 2 \mathrm{H}$ ($\mathrm{S}-\mathrm{CH}_{2}-\mathrm{C}\left(7^{\prime}\right), J=15 \mathrm{~Hz}$); $6.36 \mathrm{~m}, 2 \mathrm{H}$ (β-furanyl); $7.30 \mathrm{~m}, 4 \mathrm{H}$ (α-furanyl). TLC (benzene--ethyl acetate-n-propanol 1:1:0.5) $R_{F}=0.18$.

Table I
${ }^{13} \mathrm{C}$ Chemical shifts and splittings of compounds $I, I I I$, and $I V$

Atoms ${ }^{\text {a }}$	I^{b} (see ref. ${ }^{5}$)	$I I I{ }^{\text {b }}$	$I V^{\text {b }}$
1, 1^{\prime}	$35.91^{c}, 36.07^{c}(\mathrm{~d}, \mathrm{~d})$	36.13, $36 \cdot 13$ (d, d)	$35.22,36.35$ (d, d)
2, ${ }^{\prime}$	$33.74,33.74$ (t, t)	$32 \cdot 39^{d}, \quad 33 \cdot 59^{d}(t, t)$	$32 \cdot 51, \quad 33 \cdot 48^{\text {d }}(\mathrm{t}, \mathrm{t})$
3,3'	$35 \cdot 55^{c}, 36 \cdot 42^{c}(t, t)$	$34 \cdot 80,35 \cdot 51$ (t, t)	$33.70^{\text {e }}, 34.35$ (t, t)
4,4'	$60.09,60.09$ (d, d)	58.48 , 59.71 (d, d)	$61.22,60.09$ (d, d)
6,6'	$64 \cdot 13, \quad 64 \cdot 33^{e}(\mathrm{t}, \mathrm{t})$	$62.75,63.73$ (t, t)	58.18, 62.47 (t, t)
7,7'	59.56, 46.74 (s, s)	74.41, $46 \cdot 23$ (s, s)	132.90, 38.63 (s, s)
8,8'	39.30, 37.78 (t, t)	41.71, $\quad 38.90$ (t, t)	122.34, 37.44 (d, t)
9,9'	28.42, 29.11 (t, t)	27.74, 29.12 (t, t)	$32 \cdot 13,26 \cdot 82(t, t)$
10,10'	69.02, 69.41 (d, d)	$67.00^{d}, 67.86^{d}(\mathrm{~d}, \mathrm{~d})$	$64.53, \quad 69.30$ (d, d)
11,11'	19.20, $\quad 19 \cdot 20(\mathrm{q}, \mathrm{q})$	18.85, 19.04 (q, q)	18.85, 19.07 (q, q)
12,12'	128.71, 128.71 (s, s)	127.53, 128.77 (s, s)	$128 \cdot 52,129.43$ (s, s)
13,13'	109.26, 110.04 (d, d)	108.36, 109.53 (d, d)	109.55, 109.71 (d, d)
14,14'	142.97, 143.38 (d, d)	142.90, 144.06 (d, d)	142.60, $142 \cdot 80$ (d, d)
16,16	139.50, 139.50 (d, d)	138.93, 139.51 (d, d)	139.30, $139 \cdot 51$ (d, d)
17,17'	50.59, 42.77 (t, t)	$50 \cdot 20,45 \cdot 20(t, t)$	$38.14,46 \cdot 11$ (t, t)
$\stackrel{(+)}{\mathrm{S}-\mathrm{CH}_{3}}$			-
$\mathrm{S}-\mathrm{CH}_{3}$ $\mathrm{~S}-\mathrm{CH}_{3}$	-	20.00 (q)	17.50 (q)
$\mathrm{S}-\mathrm{CH}_{3}$	-	-	$17 \cdot 50$ (q)

[^0]Degradation of III.
To a solution of 0.2 mmol III in 6 ml methanol, moist silver oxide (prepared from 500 mg of silver nitrate) was added and the mixture was shaken for 1 h . After filtration, the solvent was removed in vacuo, sodium hydroxide (5 g), water (5 ml), and methanol (5 ml) were added and the mixture was heated under reflux for 2 h . After dilution with water, the crude product was extracted with chloroform, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent removed in vacuo. The residue was chromatographed on alumina (Fluka 506 C , grade III) using benzene as eluent; $I V, 60 \mathrm{mg}$, 61% yield, TLC (aluminium oxide) $\mathrm{CHCl}_{3} R_{F}=0 \cdot 3,[\alpha]_{\mathrm{D}}^{25}=-190^{\circ} .{ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum, $\left(\mathrm{C}^{2} \mathrm{HCl}_{3}\right): 0.98 \mathrm{~d}, 6 \mathrm{H}\left(\mathrm{C}(1)-\mathrm{CH}_{3}, \mathrm{C}\left(1^{\prime}\right)-\mathrm{CH}_{3}\right) ; 1.92 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{S}-\mathrm{CH}_{3}\right) ; 1.00-3.10 \mathrm{~m}, 28 \mathrm{H}$; $5.56 \mathrm{~m}, 1 \mathrm{H}(\mathrm{C}=\mathrm{CH}) ; 6.38 \mathrm{~s}, 1 \mathrm{H}$ (β-furanyl); $6.52 \mathrm{~s}, 1 \mathrm{H}$ (β-furanyl); $7.42 \mathrm{~m}, 4 \mathrm{H}$ (α-furanyl). Mass spectrum, m / z (relative intensity): $508\left(\mathrm{M}^{+} 9 \cdot 9\right), 493(1 \cdot 7), 461$ (2), 447 (1.3), 278 (1.8), $230(100), 178(2 \cdot 6), 136(2 \cdot 9), 110(1 \cdot 3), 107(7 \cdot 1), 94(14 \cdot 6), 81(5 \cdot 5)$.

Financial support of the Polish Academy of Sciences (MR.I.12) is gratefully acknowledged.

REFERENCES

1. La Londe R. T., Wong C. F., Das K. C.: J. Am. Chem. Soc. 95, 6342 (1973).
2. Cybulski J., Wojtasiewicz K., Wróbel J. T.: J. Mol. Struct. 98, 97 (1983).
3. Cybulski J., Wojtasiewicz K., Wróbel J. T.: J. Mol. Struct. 101, 127 (1983).
4. Cybulski J., Wojtasiewicz K.: J. Mol. Struct. 117, 183 (1984).
5. La Londe R. T., Donvito T. N., Tsai A. I.-M.: Can. J. Chem. 53, 1714 (1975).
6. Barbarella G., Dembech P., Garbesi A., Fava A.: Org. Magn. Reson. 8, 108 (1976).
7. Cybulski J., Wojtasiewicz K., Wróbel J. T.: Bull. Acad. Pol. Sci., Ser. Sci. Chim., in press.

[^0]: ${ }^{a}$ In ppm from tetramethylsilane, s singlet, d doublet, t triplet, q quartet; ${ }^{b}$ in $\mathrm{C}^{\mathbf{2}} \mathrm{HCl}_{3} ;{ }^{c}$ these four peaks may be interchanged; most likely assignment is given; ${ }^{d}$ assignments may be reversed; ${ }^{e}$ one of these values can be assigned to $\mathrm{C}(6)$, the other to $\mathrm{C}\left(6^{\prime}\right)$.

